Complementary : P(A)=p=>P(¬A)=1−pP(A) = p => P(\neg A) = 1-pP(A)=p=>P(¬A)=1−p Independence : X⊥Y:P(X,Y)=P(X)P(Y)X \bot Y : P(X, Y) = P(X)P(Y)X⊥Y:P(X,Y)=P(X)P(Y)
Total Probability Theorem/Dependence :
P(X)=∑iP(X∣Y=i)P(Y=i)P(X) = \sum_{i} P(X|Y=i)P(Y=i) P(X)=∑iP(X∣Y=i)P(Y=i)