Introduction
Mathematical Optimization
Optimization Problem
minimize f0(x)
subject to fi(x)≤bi,i=1,...,m
x=(x1,x2...xn) : Optimization variables
f0:Rn→R : Objective function
fi:Rn→R,i=1,...,m : Constraint functions
Optimal Solution
x∗ is the smallest value of f0 among all vectors that satisfy the constraints
Solving optimization problems
General optimization problem
Exception
Least Squares
minimize ∥Ax−b∥22
- Analytical Solution : x∗=(ATA)−1ATb
Linear Programming
minimize cTx
subject to aiTx≤bi,i=1,...,m
Convex Optimizatiom
Objective and Constraint functions should be convex