Convex Sets

Affine Set

Line through x1,x2x_1, x_2; all points

x=θx1+(1θ)x2,   θRx = \theta x_1 + (1-\theta)x_2, \space\space\space \theta \in \mathbb{R}

Contains the line through any two distinct points in the set

Convex Set

Line segment between x1x_1 and x2x_2; all points

x=θx1+(1θ)x2,   0θ1x = \theta x_1 + (1-\theta)x_2, \space\space\space 0 \le \theta \le 1

So all affine sets are convex but converse may not be true

Convex combination and Convex hull

Convex combination of x1,x2,...xkx_1, x_2, ... x_k: any point xx of the form

x=θ1x1+θ2x2+...+θkxkx = \theta_1x_1 + \theta_2x_2 + ... + \theta_kx_k

with θ1+θ2+...+θk=1,θi0\theta_1 + \theta_2 + ... + \theta_k = 1, \theta_i \ge 0

Convex hull SS : Set of all convex combinations of points in SS

Convex Cone

Conic(non negative) combination of x1x_1 and x2x_2; any point of the form

x=θ1x1+θ2x2,   θ10,θ20x = \theta_1x_1 + \theta_2x_2, \space\space\space \theta_1 \ge 0, \theta_2 \ge 0

Hyperplanes

Set of the form {x  aTx=b}(a0)\{x \space | \space a^Tx = b\} (a \ne 0)

Half spaces

Set of the form {x  aTx=b}(a0)\{x \space | \space a^Tx = b\} (a \le 0)

Euclidian Balls

Ball with center xcx_c and radius rr

B(xc,r)={x  xxc2r}B(x_c, r) = \{ x \space | \space \lVert x - x_c \rVert_2 \le r \}

Ellipsoid

Set of the form

{x  (xxc)TP1(xxc)1}\{ x \space | \space (x - x_c)^TP^{-1}(x - x_c) \le 1 \}

with PS++nP \in S_{++}^n i.e, symmetric positive definite

Norm balls and Norm cones

Norm : A function   \lVert \space \cdot \space \rVert that satisfies

  • x0;x=0<=>x=0\lVert x \rVert \ge 0; \lVert x \rVert = 0 <=> x = 0
  • tx=tx;tR\lVert tx \rVert = |t|\lVert x \rVert; t \in \mathbb{R}
  • x+yx+y\lVert x + y \rVert \le \lVert x \rVert + \lVert y \rVert

Euclidian ball is the special case of norm ball with two norm

Norm ball with center xcx_c and radius rr is defined as {x  xxcr}\{ x \space | \space \lVert x - x_c \rVert \le r \}

Norm cone is {(x,t)  xt}\{(x, t) \space | \space \lVert x \rVert \le t\}

Both norm balls and norm cones are convex

Polyhedra

Solution set of finitely many equalities and inequalities

Axb,Cx=dAx \preceq b, Cx = d ARmXn,CRpXn,A \in \mathbb{R}^{m X n}, C \in \mathbb{R}^{p X n}, \preceq is component wise inequality

Polyhedra is an intersection of finate number of halfspaces and hyperplanes

Positive semidefinate cone

  • SnS_n is set of symmetric n X n matrices
  • S+n={XSn   X0}S_+^n = \{X \in S_n\ \space | \space X \succeq 0 \}

XSn+<=>zTXz0  zX \in S_n^+ <=> z^TXz \ge 0 \space \forall \space z

Sn+S_n^+ is a convex cone

  • S+n={XSn   X0}S_+^n = \{X \in S_n\ \space | \space X \succ 0 \}

Intersection

Intersection of any number of convex sets is convex

Affine function

Suppose f:RnRmf : \mathbb{R}^n \to \mathbb{R}^m is affine (f(x)=Ax+b);ARmXn,BRm(f(x) = Ax + b); A \in \mathbb{R}^{mXn}, B \in \mathbb{R}^m

Convex set under affine function ff is convex SRnS \subseteq \mathbb{R}^n convex <=>f(S)={f(x)xS}<=> f(S) = \{f(x) | x \in S \} is convex

Convex set under inverse of affine function is also convex SRmS \subseteq \mathbb{R}^m convex <=>f1(S)={f1(x)xS}<=> f^{-1}(S) = \{f^{-1}(x) | x \in S \} is convex

Perspective and linear-fractional function

results matching ""

    No results matching ""